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Adaptive antenna arrays are used to in a variety of applications, with the goal of focusing a beam to a specific angle
and sometimes blocking an interferer at another angle. Some systems use this technology to callibrate to a desired
source, others use continuous algorithms to track a target. This paper aims to develop an understanding of Adaptive
Antenna Arrays from Uniform Linear Arrays (ULAs) and understand how the signal processing of an antenna system
can change the effective array pattern.

I. INTRODUCTION & MOTIVATIONS

Radio frequency tracking systems have been continuously
developed over the years for military applications, network
improvements, and radio astronomy. General antenna arrays
are good for single main lobes in a fixed position, but with
time-evolving systems, methods are needed to calibrate an-
tenna array systems, either at the start of each use or continu-
ously throughout operation.

FIG. 1. Uniform Linear Array

II. UNDERSTANDING HOW A RECEIVER EFFECTS THE
BEAM SHAPE OF A ULA

To begin, a uniform linear array is examined with more at-
tention to the receiver. Figure 1 shows a ULA connected to
its receiver processing network. Each antenna element is as-
sumed to be the same and a half wavelength element separa-
tion distance is used. In a ULA, the array pattern is dictated
by two things, the element separation (which has already been
taken as λ/2) and the element phases. Although it may be

feasible for some systems with large machinery or well con-
trolled microelectromechanical devices, once the elements are
placed it is typically difficult to change the separation dis-
tance. Due to this, the separation distance will be fixed at
half wavelength as this allows narrow beam width with a little
under 180 degree range for beam configuration.

In a general ULA, the phase between each consecutive ele-
ment is the same. Because only the phases are being modified,
we can take the magnitudes as unity and assume any scaling
of the beam is done before the weighting to reduce the effect
of noise, after the weighting for level control to some output,
or both. With this assumption, each weight can be expressed
as wn = e jαn where n is the number of separation distances be-
tween the given antenna element and the reference antenna el-
ement which is denoted with n = 0. For most cases, αn = nα0
where α0 is the separation between two consecutive elements.

To determine the array pattern, the weighted sum of the el-
ement signals is first found. For the four element example in
Figure 1 and the uniform phase difference between elements,
this becomes:

y =
3

∑
n=0

e− jω0te jnkd cosθ e jnα0 (1)

Assuming the frequency is at a known, central frequency,
we can remove the frequency dependence and achieve the ar-
ray pattern:

F(θ) =
3

∑
n=0

e jn(kd cosθ+α0) (2)

To achieve a maximum at some angle, θ0, array factor
should be zero at that angle such that all elements add con-
structively. To achieve this, the phasing should be α0 =
−kd cosθ . But what if the array application requires a null
in a specific area? Or the target moves and a new angle is
required? To meet these requirements, weighting can be mod-
ified either as calibration or continuously depending on the
application. To meet these requirements, weighting optimiza-
tion is required.
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III. ANALOGY OF FIR FILTER TO BEAMFORMING

In practicality, beamforming is a spatial FIR filter1. To un-
derstand this, first let us examine what an FIR filter is. As
shown in Figure 2, the FIR filter has four main components,
an input source (the antenna in this case), delay elements (rep-
resented with z−1), complex weights, and a summing junc-
tion. The delay blocks sample and hold the given input for
one clock period, so the value at the input moves down the
chain of delay blocks at a rate of one block per clock cycle.
For those familiar with the digital domain, this is the equiva-
lent of an analog flip flop. Although this domain description
helps understand how these blocks function, they are actually
frequency domain blocks so the delay is represented by mul-
tiplying by 1

z instead of time shifting the value (this is as deep
as we will go into z-transforms, so have no fear if you are un-
familiar with them). Additionally, the weighting is carried out
in the frequency domain, as is the summing.

FIG. 2. FIR Filter

The reason this is named an FIR filter is because an FIR sys-
tem has a finite duration impulse response and it is a frequency
filter. If a delta signal was input to this system, it would have
a non-zero response for as many clock cycles as there are in
the FIR, which would be 4 for the given system in Figure 2.
If the impulse response in Equation 3 is convolved with the
input signal in the time domain, the output can be interpreted,
however it is easier to Fourier transform the impulse response
and simply multiply it by the input to understand the similari-
ties between the FIR filter and the adaptive array. It should be
noted that t denotes a discrete time input (i.e. t ∈Z).

h(t) =
3

∑
n=0

wnδ (t −n) (3)

H(ω) =
3

∑
n=0

wne jωn (4)

If we take wk to have magnitude of 1 and equal phasing
separation between delay blocks, we find that the FIR fil-
ter is analagous to an antenna array with ω in the FIR fil-
ter corresponding to kd cosθ in the antenna array. Modifying
the weightings in either, both in magnitude and non-uniform
phases separation, gives rise to filters with specific response
shapes. For these reasons, it can be helpful to think of the an-
tenna array or beamformer as an angular filter which can be
tuned by adjusting the weighting.

H(ω) =
3

∑
n=0

e jn(ω+α0) (5)

F(θ) =
3

∑
n=0

e jn(kd cosθ+α0) (6)

IV. BEAMFORMING WITH OPTIMIZATION

FIG. 3. Beamformer with Generalized, Tunable Weights

We now look at a new depiction of the system receiver
which includes four elements as before but now with tunable
weighting. By removing the restrictions of uniform phasing
and amplitude, the weighting can be further utilized to im-
plement more specific pattern details, such as multiple maxi-
mums or minimums. With these new freedoms on the weights,
we can rewrite Equation 1 with more generalized weights.
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y =
3

∑
n=0

wnxn = w⃗H x⃗ (7)

where

w⃗ =

w∗
0

w∗
1

w∗
2

w∗
3

 and x⃗ =

x0
x1
x2
x3


Each weight, wn, is complex, w∗

n is used to denote the com-
plex conjugate of wn and w⃗H is defined as the Hermitian of w⃗
which is equivalent to the complex conjugate transpose of w⃗.

If it is known that a signal is being received from a certain
angle θ0, weight optimization can be used to block or enhance
the signal. We will consider these separately and then com-
bine them to develop a process for beamforming.

A. Signal of Interest (SOI) Case

In the signal of interest case, the signal is desired to pass
through so the radiation pattern should have a main lobe in
the direction of arrival (DOA) of the target. To make this hap-
pen, we assume that the incoming signal at each element has
an amplitude of 1 and the desired signal output also has a mag-
nitude of 1. We continue to assume that all incoming signals
are at the receivers operating frequency ω0, which could be
achieved by bandpass filtering.

B. Signal Not of Interest (SNOI) Case

For interferers or signals not of interest, the signal is not
desired and will likely overwhelm the receiver or make the
desired signal harder to interpret. For these reasons, we de-
sire a null at the DOA of the interferers to prevent them from
passing through the receiver. We will start by analyzing these
signals with an amplitude of 1, but in practicality interferer
signals will have much larger amplitudes than the desired sig-
nal.

C. Combining to Make an Optimization Model

For any specific DOA θ0, we can express the output of the
beamformer as a function of that angle θ0:

y(θ0) =
3

∑
n=0

wnxn(θ0) = w⃗H x⃗(θ0) (8)

Notice that w⃗ is not a function of this angle, as the same
weights will be applied for every signal that comes in regard-
less of input. The goal of the optimization problem is to de-
velop a set of weights that optimizes the output of the beam-
former to match the desired output. We call this desired output
d(θ0) and can derive an error function for the beam former as:

ε(θ0) = d(θ0)− y(θ0) (9)

which can also be written as

ε(θ0) = d(θ0)− w⃗H x⃗(θ0) (10)

If there were a single element, there would be no effect on
weighting its output, as there is no constructive or destructive
interference to tune. However, if there are multiple elements,
the antenna weighting can be tuned such that the outputs of
each element do have constructive or destructive interference
at specific angles. This is the general idea of using antenna
arrays, but with optimization we are able to specify a desired
output and receive a low error weighting configuration.

One popular model for many optimization algorithms
within adaptive antennas is the MMSE or Minimized Mean
Square Error criterion2. This takes the error given above
and develops a cost function to optimize with respect to the
weights. The following shows the derivation of weights using
the MMSE criterion:

J(ε) = E[ε2]

J(ε) = E[(d − w⃗H x⃗)2]

J(ε) = E[|d|2 − d⃗xH w⃗− w⃗H x⃗dH + w⃗H x⃗⃗xH w⃗]

∇w⃗J = 0 = E[−⃗xdH − x⃗dH + x⃗⃗xH w⃗opt + x⃗⃗xH w⃗opt ]

2E [⃗x⃗xH ]w⃗opt = 2E [⃗xdH ]

Rxxw⃗opt = r⃗xd

w⃗opt = Rxx
−1

r⃗xd

One thing to note is how the expectation operator affects
the analysis. In practice, this is important to keep through
the computation as the input vector x⃗ is always changing and
there is noise, but the expectation of the input is what we are
tuning the system to. This can be found through processing in
the receiver. For purposes of understanding optimization of
the system, we assume E [⃗x] = x⃗ in later sections. Because the
weights and desired signal are set by the user, the expectation
will have no effect on them as they are equal to their expecta-
tion. It should be noted that Rxx represents the covariance of
the input signals and r⃗xd represents the cross correlation.

Expanding this to more dimensions introduces an optimiza-
tion problem focused around satisfying the desired signal out-
put over a number of angles. We now consider a vector of
error functions to minimize, ε⃗ , given by the following:

ε⃗ = d⃗ − w⃗HX (11)

where
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ε⃗ =
[
ε(θ1) ε(θ2) · · · ε(θk)

]
(12)

d⃗ =
[
d(θ1) d(θ2) · · · d(θk

]
(13)

X =


x0(θ1) x0(θ2) · · · x0(θk)
x1(θ1) x1(θ2) · · · x1(θk)

...
...

. . .
...

xn(θ1) xn(θ2) · · · xn(θk)

 (14)

w⃗ =


w∗

0
w∗

1
...

w∗
n

 (15)

Reconfiguring the result of the MMSE criterion with these
higher dimensional vectors produces a method for determin-
ing a weighting configuration for a number of desired angle
responses.

w⃗opt =
(

X X
H)−1

Xd⃗H (16)

D. Implementation of MMSE in Python

The above method for optimizing the antenna array for a
specified desired signal for different directions gives the math-
ematical footprint for an algorithmic implementation of beam-
former development. I developed two algorithms for achiev-
ing optimal null and main lobe patterns, one focused on plac-
ing main lobes in specific places and minimizing the gain of
the array pattern everywhere else, the other focused on placing
nulls in specific areas and providing equal gain everywhere
else. The code for the SOI focused algorithm is shown below:

1 import numpy as np
2 import scipy as sp
3 import matplotlib.pyplot as plt
4

5 elements = 90 # Number of elements in array
6 angles = 180 # number of angles being taken

into account↪→

7 angle = np.linspace(0,np.pi,angles)
8 d = np.zeros(angles, dtype='complex_')
9 SOI = np.array([np.pi/4, np.pi/2, np.pi*0.57,

3*np.pi/4])↪→

10 for i in SOI:
11 for n,m in enumerate(angle):
12 if(np.abs(m-i) <= 0.6*np.pi/angles):
13 d[n] = 1
14

15 X = np.empty([elements,angles],
dtype='complex_')↪→

16 j = (-1)**0.5
17 for n in range(elements):
18 for k in range(angles):
19 # print(k)
20 X[n][k] =

np.exp(j*n*np.pi*np.cos(angle[k]))↪→

21

22 X = np.matrix(X)
23 D = np.matrix(d)
24 A = X*np.matrix.getH(X)
25 B = X*np.matrix.getH(D)
26 w = np.array(np.linalg.solve(A,B))
27 w = np.matrix(w)
28 calcD = np.array(np.matrix.getH(w)*X)
29

30 def array_pattern_spec(theta):
31 X = np.empty([w.size], dtype='complex_')
32 j = (-1)**0.5
33 for n in range(elements):
34 X[n] = np.exp(j*n*np.pi*np.cos(theta))
35 X = np.matrix(X)
36 X = np.transpose(X)
37 return np.matrix.getH(w)*X
38

39 theta1 = np.linspace(0,np.pi,360)
40 array_pattern =

np.vectorize(array_pattern_spec,
otypes={'complex_'})

↪→

↪→

41 F = array_pattern(theta1)
42 plt.plot(theta1,F)
43

44 Flog = 10*np.log10(np.abs(F)**2)
45 plt.plot(theta1,Flog)

FIG. 4. Magnitude Response of the 90 Element Beamformer

This instantiation of the algorithm uses 180 degrees of in-
put angles with the desired output set to one if it is in the list
of SOI angles and zero otherwise. For all of the following
cases, θ = [π/4,π/2,0.57π,3π/4] is used as the DOA angles
for SOI or SNOI, depending on whether the algorithm is SOI
or SNOI based. The computation of Equation 16 is then car-
ried out and the array response for the achieved weighting is
plotted. If more than 180 elements were used, the array pat-
tern would be fully defined with no error so the least squares
optimization would not be effective. The displayed code used
90 elements for good resolution without exceeding the num-
ber of angles considered as SOI or SNOI. Figure 4 and Figure
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5 show the array response for the displayed code in magnitude
and decibels, respectively.

FIG. 5. Response of the 90 Element Beamformer in dB

Using a lower number of elements, the sidelobe levels and
the half power bandwidth both increase, while gain decreases,
as is the case in general antenna arrays. To demonstrate this, I
ran the same algorithm using 10 elements instead of 90. The
resulting array pattern can be seen in Figure 6 (Magnitude)
and Figure 7 (dB).

FIG. 6. Magnitude Response of the 10 Element Beamformer

FIG. 7. Response of the 10 Element Beamformer in dB

The other algorithm considers every angle as containing an
SOI unless otherwise specified by a list of SNOIs. The result-
ing array pattern with 90 elements in the SNOI algorithm can
be seen in Figure 8 (Magnitude) and Figure 9 (dB). It should
be noted that there is decent rejection (∼ 10 dB) but variable
gain across the pass angles (around ±2 dB). For this reason, it
is more favorable to use the SOI algorithm in most cases as a
better SNOI focused algorithm can be developed from taking
a unity gain input (as close to isotropic radiator as possible)
and performing incoherent processing on both the unity gain
and the beamformer gain. The output of the beamformer can
be subtracted from the isotropic radiator output to get a rel-
atively flat pass band with certain angle rejections across the
angular domain. This can be seen in Figure 10. One visible
downside is the higher gain values in the rejection range, with
rejection not even breaking 4 dB, whereas the direct SNOI
algorithm has attenuation of up to almost 10 dB.

FIG. 8. Magnitude Response of the 90 Element SNOI Beamformer
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FIG. 9. Response of the 90 Element SNOI Beamformer in dB

FIG. 10. Result of Coherent Processing on 90 Element Beamformer
with an SOI configuration subtracted from Coherent Processing on
Isotropic Receiver

V. ALGORITHMIC CONSIDERATIONS

There are many types of adaptive array algorithms that have
been developed since the 1970s. The MMSE algorithm above
works well for calibration, but due to the demanding matrix
computations, this is less feasible in most applications, espe-
cially low-power systems. With the development of machine
learning and artificial intelligence hardware, there has been
significant investment into faster, more efficient matrix capa-
ble devices which could make the MMSE algorithm more en-
ticing for some applications. Another algorithm for adaptive
arrays is the LMS algorithm or Least Mean Squares, which
aims to minimize the same cost function as the MMSE algo-
rithm, however it uses a gradient descent algorithm to achieve
the optimization without having to compute any inverse matri-
ces. This is enticing for its ability to continuously recompute
the optimal weight vector. The downside of this algorithm is

cycle times, because it is iterative it can take some time to
reach an optimal point depending how long it takes to recom-
pute the weight vector and how commanding the cost function
gradient is. To see this, the LMS algorithm can be examined.
Starting with Equation 17, the weights are determined by tak-
ing the gradient of the cost function at one time value m and
subtracting that from the weight vectors with a significance
constant µ . The smaller µ is, the more accurate the algorithm
is, but it will also increase the convergence time. There is also
an upper bound on µ determined by the covariance matrix X
for convergence, given by 0< µ < (Trace[X ])−1. The gradient
of the cost function was derived above for the MMSE algo-
rithm, but has been condensed into a clearer form in Equation
18.

w⃗(m+1) = w⃗(m)−µ∇w⃗J(m) (17)

∇w⃗J(m) =−2⃗x(m)
(
dH(m)− x⃗H(m)w⃗(m)

)
(18)

FIG. 11. Hybrid Array Using FIR Filtering and Beamforming

VI. COMBINING FIR FILTERS WITH BEAMFORMERS
FOR TARGET TRACKING

Due to the ability of the beam pattern to change while oper-
ating, there are many applications of the adaptive array. How-
ever, the adaptive array requires a known direction of signal
(or interferer) to determine optimal weights. Using an FIR
filter is helpful for selecting frequencies, but does not tell
the user much about the angular input as that is antenna de-
pendent. But what if these could be combined to block sig-
nals at different frequencies and angles? First, an antenna ar-
ray would have each element tied to an identical FIR filter,
presenting the same output delay from the antenna and fre-
quency filtering characteristics. This would be tuned based on
a known desired frequency. Next, the output of the FIR filters
would be sent through a DOA (Direction of Arrival) estimator
to determine where the desired signal is located. This estimate
is sent into the adaptive antenna array where it is used within
an algorithm like the MMSE or LMS to target the desired sig-
nal. This would provide rejection to other angles and increase
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the SIR (Signal to Interference Ratio). Lastly, the output of
the beamformer would go through another identical FIR filter
to reduce the power of any signals of different frequencies that
came from the same direction as the desired signal. This dual
filtering scheme allows the receiver to track the desired target
from knowing only the operating frequency.

VII. DISCUSSION AND CONCLUSIONS

A. Discussion

Although there has been a focus on the theoretical imple-
mentations, it is important to consider what is practical with
modern hardware. The FIR filter would likely be constructed
using switched capacitor circuits in the analog domain34. The
beamforming could be done in a few ways, as there is in-
frastructure for both analog and digital beamforming5. If the
beamforming is done digitally, an analog to digital converter
(ADC) will be needed for beamforming and a digital to analog
converter (DAC) will be needed for input to the FIR filter.

The phase differences will be due to time delay in receiving
between the different elements. This is also dependent on the
carrier frequency, so this beamforming scheme will work best
for amplitude modulated coding and less well for frequency

modulation due to the phase dependence on frequency.

B. Conclusion

The increase in machine learning research and hardware
has made matrix computation more efficient and feasible, cre-
ating a space for more matrix computations to be carried out
with speed and efficiency. This could allow the MMSE al-
gorithm to be used within systems such as the proposed FIR
hybrid filter. The use of optimization theory in both the fre-
quency (FIR) and angular (beamformer) domains is desirable
for easily adaptable systems. There are many applications for
adaptive antenna arrays, from networking communications for
increased throughput to target tracking across a large range of
angles.
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